Prediction the Return Fluctuations with Artificial Neural Networks' Approach

Authors

  • Masoud Taherinia Department of Accounting, Lorestan University, Economic and Administration Science Faculty, Lorestan, Iran.
  • Mohsen Rashidi Baghi Department of Accounting, Lorestan University, Economic and Administration Science Faculty, Lorestan, Iran.
Abstract:

Time changes of return, inefficiency studies performed and presence of effective factors on share return rate are caused development modern and intelligent methods in estimation and evaluation of share return in stock companies. Aim of this research is prediction of return using financial variables with artificial neural network approach. Therefore, the statistical population of this study includes 120 listed companies in Tehran stock securities during 2005 to 2017. Independent variables in this research are market variables (Earning quality, free cash flow) and dependent variable is share return. The obtained outputs from estimation of the artificial neural networks and results obtained from estimation, using of this method with evaluation scales concerning random amount and comparing it with adjusted R, we found that there is meaningful relation between the associated variables and return. However, such network has the least error than other networks.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Artificial neural networks versus bivariate logistic regression in prediction diagnosis of patients with hypertension and diabetes

Background: Diabetes and hypertension are important non-communicable diseases and their prevalence is important for health authorities. The aim of this study was to determine the predictive precision of the bivariate Logistic Regression (LR) and Artificial Neutral Network (ANN) in concurrent diagnosis of diabetes and hypertension. Methods: This cross-sectional study was performed with 12000 ...

full text

Prediction of the deformation modulus of rock masses using Artificial Neural Networks and Regression methods

Static deformation modulus is recognized as one of the most important parameters governing the behavior of rock masses. Predictive models for the mechanical properties of rock masses have been used in rock engineering because direct measurement of the properties is difficult due to time and cost constraints. In this method the deformation modulus is estimated indirectly from classification syst...

full text

Prediction of Zarrinehrud River Run-Off in the Climate Change Condition using Artificial Neural Networks

   In the present research, the climate change effect on variation of surface runoff of Zarrinehrud located in the Miandoab plain was investigated. In this direction, the scenarios including A1B, A2 and B1 via LARS-WG downscaling model and with applying the HadCM3 general circulation model and artificial neural network model in two different periods (2046-2065, 2080 -2099) were studied. For thi...

full text

The Prediction of Surface Tension of Ternary Mixtures at Different Temperatures Using Artificial Neural Networks

In this work, artificial neural network (ANN) has been employed to propose a practical model for predicting the surface tension of multi-component mixtures. In order to develop a reliable model based on the ANN, a comprehensive experimental data set including 15 ternary liquid mixtures at different temperatures was employed. These systems consist of 777 data points generally containing hydrocar...

full text

A combined Wavelet- Artificial Neural Network model and its application to the prediction of groundwater level fluctuations

Accurate groundwater level modeling and forecasting contribute to civil projects, land use, citys planning and water resources management. Combined Wavelet-Artificial Neural Network (WANN) model has been widely used in recent years to forecast hydrological and hydrogeological phenomena. This study investigates the sensitivity of the pre-processing to the wavelet type and decomposition level in ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue 2

pages  103- 114

publication date 2019-05-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023